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Abstract. In this article, I introduce a new user-written command (coin) to
study data structures. coin is founded on a combination of statistical and social
network analyses. The purpose of this procedure is to ascertain the most frequent
events in a given set of scenarios and to study the relationships between them.
coin uses a variety of procedures, such as multidimensional scaling, principal
components analysis, correspondence analysis, biplot representations, agglomer-
ation techniques, and network analysis algorithms. Because of this, it works with
dichotomous variables and can be applied to the exploratory analysis of question-
naires, the study of textual networks, the review of database contents, and the
comparison of different statistical analyses of interdependence.
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1 Introduction

The coin command facilitates a wide range of statistical analyses and graphs for a
set of multiple and interdependent dichotomous variables. With coin, the user can
obtain conjoint frequencies of each of the variables. It also permits the calculation
of diverse correlation coefficients and measures of distances, aiming for discovery of
observable system-wide patterns in series of events or discovery of characteristics that
are not mutually exclusive across sets of scenarios or cases by using both multivariate
statistical tools and social network analysis.

coin may be particularly suitable in three cases:

• when getting information from multiresponses or from variables with categories
that are not mutually exclusive

• when working with two-mode networks

• when analyzing co-occurrences

Let us discuss each of these cases in turn.

The first case when coin may be particularly suitable is when getting information
from multiresponses or from variables with categories that are not mutually exclusive,
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as may occur, for example, when a variable is consistent in the countries visited by a
person. The scope of responses in this case may range from no country visited to more
than one hundred countries visited for those who travel a lot. Similarly, for statistical
programs used by researchers (R, SAS, SPSS, Stata, Statgraphics, etc.), it is likely that
many specialists would mention more than one of these programming environments.
This problem has been addressed in previous issues of this journal (Cox and Kohler
2003), and there are programs that convert these types of variables from a polytomous
format (see table 1) into a dichotomous format (see table 2).1

Table 1. Example of polytomous format

Program1 Program2 Program3

Stata
SAS Other
R Stata
SPSS Other

Table 2. Example of dichotomous format

R SAS SPSS Stata Other

0 0 0 1 0
0 1 0 0 1
1 0 0 1 0
0 0 1 0 1

Ben Jann’s 2005 widely used mrtab command permits the analysis of variables with
nonmutually exclusive values. This command allows both the formation of tables with
multiresponse variables and the creation of two-way tables with other single variables,
such as gender. However, mrtab, as well as previously cited programs, is unable to
tabulate multiresponse variables with themselves to determine, for example, how many
people have visited both Canada and Mexico or how many researchers use both R
and Stata. The coin command is useful in these situations, because it can tabulate a
variable whose values are not mutually exclusive with itself.

1. Within the coin package is another command called precoin, which converts the polytomous
variables into dichotomous ones. Some advantages of this command compared with existing ones
are that it is much faster because it is written in Mata, it is not necessary to determine previously
the values of the convertible categories, and it allows the indication of a minimum number of
positive cases that a category should have to become a dummy and allows the sorting of new
variables by the frequencies of positive values. For details of this command, type help precoin

after installation.
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A second time when coin may be particularly suitable is in the case of two-mode
networks. Although Stata was not designed for network analysis, Corten (2011), Miura
(2012), and Grund (2015) have developed commands that permit calculations and
graphical representations of networks. However, none of them posed the problem of
the treatment of two-mode networks. The purpose of social network analysis is to study
the interactions among a set of actors (individual or collective). Its starting point is a
square matrix of adjacencies with as many rows and columns as there are actors. The
matrix cells contain the magnitude of the link (choice, neighborly relationship, nature
of personal relationship, similarity, . . . ) between the actor in the row with the actor in
the column. In the famous example of Italian Renaissance families (Padgett and Ansell
1993), two matrices were created for 16 Florentine families: one for marital relations
and another for the commercial relations between them. Both were built symmetrically
(nondirected networks) insofar as both marital and commercial relationships involve
reciprocity.

coin is not a command designed to analyze social networks. However, it uses both
statistical and graphical representations and therefore may be useful with two-mode
networks, in which relations are established between two different sets of actors or
events (such as in the example of Galaskiewicz and Wasserman (1989), which analyzed
the relationship between a set of corporations and a set of nonprofit organizations).

The starting point of coin greatly resembles these two-mode networks. It is a dataset
where a set of actors (or scenarios) are listed in the rows, and another set of actors (or
events) are allocated to the columns. The first action of coin is to transform this two-
mode matrix into a one-mode matrix in which the actors (scenarios or cases) located in
rows disappear and only those actors (events or variables) located in the columns are
shown. Imagine, for example, two people who go to the movies and three who go to the
theater. Their representation would be such that we would have two scenarios in rows
and five people in the columns (see table 3).

Table 3. Example of a two-mode network

Scenario a b c d e

Movies 1 1 0 0 0
Theater 0 0 1 1 1

By applying coin, a square matrix of five people is formed (see table 4). People
a and b would be connected to indicate that they both saw a movie, and people c, d,
and e would interconnect because they all went to the theater.



M. Escobar 1121

Table 4. Two-mode network transformed into a one-mode network

a b c d e

a 0 1 0 0 0
b 1 0 0 0 0
c 0 0 0 1 1
d 0 0 1 0 1
e 0 0 1 1 0

A third case where coin may be particularly useful is the analysis of co-occurrences.
Hofmann and Puzicha (1998) considered that the modeling and prediction of the co-
occurrence of events is a fundamental application of unsupervised learning techniques.
With this aim, it takes as its point of departure a dyadic data structure called co-
occurrence data, which consists of two finite sets of elements, X = {x1, . . . , xN} and
Y = {y1, . . . , yM}, wherein the elementary observations are the pairs of elements formed
by the sets X and Y together with their corresponding frequency. As an example,
imagine a set of texts analyzed with another set of words. A co-occurrence matrix (see
table 5) would consist of as many rows as there are available texts and as many columns
as there are word frequencies to be analyzed. The elements of this matrix would be the
frequency of each word in each text (Leydesdorff and Vaughan 2006; Tumminello et al.
2011).

Table 5. Co-occurrence matrix

Word1 Word2 Word3 Word4

Text1 2 3 2 10
Text2 4 2 0 3
Text3 8 1 5 0
Text4 0 0 6 7
Text5 5 0 0 2

In contrast to co-occurrence analysis, coincidence analysis has as its starting point
a more elementary matrix (called an incidence matrix) whose observations concern
merely presence or absence. Thus, the co-occurrence matrix above could be converted
into an incidence matrix in two ways: by dividing the texts into smaller units (such as
paragraphs) or by converting the frequencies into dichotomous values. As an example,
the above co-occurrence matrix is converted into an incidence matrix (see table 6) where
the words that are present in each of the texts are expressed by 1. As you can see, all
four words studied are found in Text1, while Text2 does not contain Word3 and Text4
does not contain Word1 and Word2.
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Table 6. Incidence matrix

Word1 Word2 Word3 Word4

Text1 1 1 1 1
Text2 1 1 0 1
Text3 1 1 1 0
Text4 0 0 1 1
Text5 1 0 0 1

So, in general, the coin command can be useful in at least three situations: first,
when multiple responses are analyzed, in which case people interviewed would be the
cases and the various responses expressed dichotomously would the variables; second,
with two-mode social networks, where actors would be the cases and organizations,
events, or other actors would be the variables; and third, in the study of co-occurrences,
where different texts or scenarios would be the cases while words, events, acts, or people
would be the variables.

Specifically, coin is useful in the study of media audiences; the content analysis
of newspapers, textbooks, party manifestos, blog posts, tweets, etc. (Provalis Research
2015); the quantification of mutual quotes among a number of authors in a series of
articles; counting occurrences and co-occurrences of characters in texts, documents,
films, or photographs; the study of relations between organizations or associations based
on their common members; and the statistical analysis of the behavior of multiple choice
in questionnaires.

2 Foundations

The purpose of coincidence analysis is to detect what characters, objects, attributes,
characteristics, or events tend to occur together within certain limits (Escobar 2009).
These given limits are called scenarios (I) and are considered to be units of analysis. In
each scenario i, a series of J events may occur; these events are dependent or independent
of each other and will be represented as J dichotomous variables Xj . The objective of
the analysis is to find the subset of pairs of categories that are not independent in the set
of possible matching events J(J − 1)/2 in each scenario. The smallest possible analysis
is that of a single set, with only one scenario in which there are two possible events
denoted Xj and Xk. Only if both events are jointly present in the same scenario is it
asserted that both are mere coincident; that is, (xij = 1 ∧ xik = 1) ⇒ fjk = 1.

The analysis becomes more complicated and becomes the subject of statistical anal-
ysis when there is a large number of scenarios in one set (n). In this case, data may be
arranged in the form of a matrix of dimensions n × J . This I matrix is an incidence
matrix, composed only of 0s and 1s, which indicate for the ith scenario whether the
event j has occurred (1) or not (0).
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The corresponding frequency matrix F has dimensions J × J and may be obtained
by means of the product I′I. The elements of this matrix are univariate frequencies
(fjj) and bivariate frequencies (fjk) of the events in one set of scenarios.

Take as an example the previous set (I) of five texts. Each text (i) could be consid-
ered a scenario whose events are the appearance of a word of interest for the analysis.
In each scenario, there would be as many words (that is, variables) as a researcher
considered to be important (J). However, only those words (Xj) that are included in
each text would be marked with 1 (xij = 1). In this way, the sum of all variables for
each text would represent the number of relevant words (fi) included in it. On its side,
each variable (Xj) would be a word, and a summation (fj or, even better, fjj) would
indicate the number of texts in which the words are present.

The relevant part of the analysis is to study whether the appearance of each word
in the texts follows a particular pattern in relation to the occurrence of other words.
A mere coincidence would be defined when two specific words (j and k) are present at
least once in the same text. And a pair of words would be likely to be coincident if
their frequency of coappearance in the selected texts (fjk) is greater than if both events
were independent. For example, if a word has appeared in 10 texts out of 100 and the
other word has appeared in 20, only if they coappeared in more than 2 texts can it be
said that both words are not independent; to put it in another way, these two words
will likely be coincident.

Three probabilistic measures can be derived from the frequency matrices F: marginal,
conditional, and joint probabilities.

The marginal probability of Xj , denoted as Pr(Xj), can be obtained from the ratio
between the frequency of each event (fjj) and the total number of scenarios where they
could have appeared (n):

Pr(Xj) =
fjj
n

The joint probability of two events Xj and Xk, expressed as Pr(Xjk), is derived from
the frequency of occurrence in the same scenario, further divided by the set of scenarios
contemplated in a given set:

Pr(Xjk) =
fjk
n

The conditional probabilities, denoted by Pr(Xj |Xk), express the possibility that
a specific event has occurred under the assumption that a second event also occurred.
They are obtained by dividing the joint probability by the probability of the conditioning
event:

Pr(Xj |Xk) =
Pr(Xjk)

Pr(Xk)
=

fjk
fkk
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By definition, the two events j and k are independent when the conditional proba-
bility of the first given the second is identical to the marginal probability of the first,
that is, when the following condition is satisfied:

fjk =
fjjfkk

n

On this basis, those events j and k that meet the following inequality are what we will
call probable coincident events:

fjk >
fjjfkk

n

However, because it is generally samples of scenarios that are worked on, this crite-
rion has to be more restrictive. Instead, Haberman residuals (Haberman 1973) can be
used as a criterion of significance (rjk), according to the following expression:

rjk =
fjk − fjjfkk

n√
1−fjj

n
1−fkk

n

We will call it a statistically probable coincidence when two events j and k have the
probability of having a 0 residual less than a fixed quantity (normally, 0.05); that is, in
large samples, two events (Xj and Xk) are statistically coincident if their rjk is larger
than 1.96, as long as this statistic is normally distributed in random samples. Following
this, sets of coincidences or adjacencies are defined by the matrix (A). Each element of
this matrix is defined by the rule

ajk

{
= cjk ⇔ Pr(rjk <= 0) < p ∧ (j �= k)
= 0 ⇔ Pr(rjk <= 0) >= p ∨ (j = k)

where p is a different number according to the type of coincidence considered [mere (1);
probable (0.5); or statistically probable (0.05 or less)] and cjk either is a constant (usu-
ally 1) to indicate the existence of a match or is a proximity distance. In this context,
the use of rjk is proposed, whose maximum value is known and equal to

√
n, although

the use of a constant equal to the unit would be preferable.

Given any matrix (A), a graph with as many nodes as events (J) can be drawn in
each set (h), whose connecting lines or arrows may be delineated in case of coincidence
with a thickness proportional to the size of the residuals rjk. Similarly, the area of each
node can be represented in proportion to the frequency (fjj) of each event (Xj) in a
determinate set of scenarios.
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3 Features of the coin command

The coin program is capable of calculating statistics and creating graphs.

3.1 Statistics

coin calculates the following statistics:

1. Empirical frequencies (frequencies)

In general, the statistics generated by coin are presented in matrix mode with as
many columns and rows as events (or variables) that have been entered into the
analysis. The coincidence matrix is the result of multiplying the transpose of I
by itself. In the diagonal of this matrix appear the frequencies of the events in
different scenarios, while nondiagonal elements are frequencies of the coincidences
of the events. The first matrix of table 7 (below) reflects the coincidence matrix of
the incidence matrix of table 6. In the diagonal axis of the coincidence matrix, we
see that Word1 and Word4 appear in four texts, while Word2 and Word3 appear
in only three. Word1 appears in the same text as Word2 and as Word4 three
times, while the remaining coincidences occur twice.

2. Relative frequencies (vertical, horizontal, grelative)

coin can calculate three relative frequencies, which it converts into percentages.
The vertical and horizontal relative frequencies are conditional (that is, calcu-
lated for each specific event) on the assumption that the other has also occurred.
coin’s two modalities are a function of the conditional event whether it is shown
in rows or columns. The third relative frequency is the conjoint probability, calcu-
lated on the total number of scenarios analyzed. These three relative frequencies
are shown in table 7, converted into percentages. The vertical and horizontal
percentages are redundant, because they are the respective transpose matrices.

Unlike in other tables, the bases of the percentages in table 7 are not calculated
by summing all frequencies of a row or column. This is because in these types
of tables, frequencies in each category are not mutually exclusive. The bases of
the horizontal and vertical percentages are the empirical frequencies present in
the corresponding diagonal. In addition, the base of the total percentages is the
number of scenarios, which is not equal to the sum of the elements in the diagonal
insofar as the events are not mutually exclusive but coincident.
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Table 7. Absolute, relative, and expected frequencies

. use example

. coin Word*, frequencies vertical grelative expected minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Frequencies Word1 Word2 Word3 Word4

Word1 4
Word2 3 3
Word3 2 2 3
Word4 3 2 2 4

Rel. frequencies(%t) Word1 Word2 Word3 Word4

Word1 80.0
Word2 60.0 60.0
Word3 40.0 40.0 60.0
Word4 60.0 40.0 40.0 80.0

Col. percentages Word1 Word2 Word3 Word4

Word1 100.0 100.0 66.7 75.0
Word2 75.0 100.0 66.7 50.0
Word3 50.0 66.7 100.0 50.0
Word4 75.0 66.7 66.7 100.0

Expected frequencies Word1 Word2 Word3 Word4

Word1 3.2
Word2 2.4 1.8
Word3 2.4 1.8 1.8
Word4 3.2 2.4 2.4 3.2

3. Expected frequencies (expected)

Expected frequencies are the values that the frequencies would acquire if the events
were independent. Their formulas were given in the previous section. coin can
display them if used with the expected option. In the current example, only the
duplets Word2 with Word1 and Word2 with Word3 have a frequency higher than
what we expected, so they should be considered probable coincident events.

4. Residuals, both standardized and normalized, with their statistical significances
(residuals, standard, normalized, pnormalized, pfisher)

Comparisons between empirical and expected frequencies give way to the residuals.
Residuals can be standardized by dividing by the square root of the expected
frequency or can be normalized using Haberman’s formula as discussed in the
previous section.

In addition, a residual’s significance can be obtained using the pnormalized op-
tion. This is valid for high expected frequencies above 5 and is better for those
above 30. In the small-sample case, it is preferable to use Fisher’s exact test
(pfisher) to obtain correct significances. With the significance, one can distin-
guish statistically probable events from those that are not. See table 8.
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Table 8. Residuals and their significances

. coin Word*, residuals standard normalized pnormalized pfisher minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Residuals Word1 Word2 Word3 Word4

Word1 0.8
Word2 0.6 1.2
Word3 -0.4 0.2 1.2
Word4 -0.2 -0.4 -0.4 0.8

Standard residuals Word1 Word2 Word3 Word4

Word1 0.4
Word2 0.4 0.9
Word3 -0.3 0.1 0.9
Word4 -0.1 -0.3 -0.3 0.4

Haberman residuals Word1 Word2 Word3 Word4

Word1 2.2
Word2 1.4 2.2
Word3 -0.9 0.4 2.2
Word4 -0.6 -0.9 -0.9 2.2

p. Haberman residuals Word1 Word2 Word3 Word4

Word1 0.04
Word2 0.11 0.04
Word3 0.80 0.36 0.04
Word4 0.70 0.80 0.80 0.04

p. Fisher exact test Word1 Word2 Word3 Word4

Word1 0.20
Word2 0.40 0.10
Word3 . 0.70 0.10
Word4 . . . 0.20

5. Odds ratios, their typical errors, and significances (odds, stodds, podds)

Instead of residuals, odds ratios can be used to see if the two events or series of
events are coincident. An odds ratio of higher than 1 would indicate a probable
coincidence. If the standard error of these odds ratios (stodds) is calculated,
their significance can be obtained (podds) and is equivalent to that of Haberman
residuals (pnormalized).

With small frequencies, it is important not to use odds ratios. In fact, if the non-
coincident frequencies are equal to 0, the value of the odds ratio is undefined. In
these cases, coin adds a value of 0.5 to these frequencies to obtain the approximate
value of this statistic. See table 9.
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Table 9. Odds ratios, standard error, and significance

. coin Word*, odds stodds podds minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Odd ratios Word1 Word2 Word3 Word4

Word1 .
Word2 6.0 .
Word3 0.5 2.0 .
Word4 1.5 0.5 0.5 .

se. ln(odd ratios) Word1 Word2 Word3 Word4

Word1 .
Word2 2.1 .
Word3 2.0 1.9 .
Word4 2.1 2.0 2.0 .

p. odd ratios Word1 Word2 Word3 Word4

Word1 .
Word2 0.21 .
Word3 0.63 0.36 .
Word4 0.43 0.63 0.63 .

6. Tetrachoric correlation matrix (tetrachoric)

Because the data are binary, it would not be appropriate to work with correlation
coefficients. Instead, coin works with tetrachoric correlation to carry out a prin-
cipal components analysis (see section 3.2). With the tetrachoric option, this
matrix can be displayed on the screen.

7. Matrix of distances between events (distance(measure))

One way to study the proximity of events is to use proximity or distance measures.
Among them, binary proximity measures (Hubálek 1982; Gower 1985) are espe-
cially relevant. These measures have a maximum value of 1 when two dichotomous
events are completely coincident and 0 when they are independent of one another.
They can sometimes take negative values, where −1 is the minimum value, in the
case of two fully antagonistic events; that is, when one event occurs, the other is
absent and vice versa.

Stata allows the calculation of 14 proximity measures that can be classified into
four types. Included in the first category is the matching distance [also known
as the Rogers and Tanimoto coefficient (rogers)]. The common characteristic of
measures in the first category is that they are ratios between numerators in which
positive coincidences (when two events appear in the same setting, a) and negative
coincidences (when two events are absent in the same setting, d) appear, and
denominators in which all settings are considered with different weights. Measures
belonging to this category are the Sneath and Sokal coefficient (sneath), the
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Rogers and Tanimoto coefficient (rogers), the Anderberg coefficient (anderberg),
and the binary similarity coefficient (gower2).

The second category is that of Jaccard distances (jaccard). Jaccard distances
measure events in which neither of the two events whose level of coincidence is
sought to be measured are excluded (d). Those settings that do not include any
of the events are thus not included in either the numerator or the denominator.
The measures of Dice and anti-Dice (dice and antidice), Ochiai (ochiai), and
Kulczynski (kulczynski) use the same criteria.

The third category of binary similarity measure is found uniquely in the work of
Russell (russell). This measure is characterized by considering as similar only
those settings in which both events occur (a). It excludes (in the numerator of the
ratio) those settings that do not list any event (d), considering that this circum-
stance does not indicate that the settings are similar. However, in contrast to the
similarity measures of jaccard, all possible settings appear in the denominator of
the ratio.

Finally, the fourth category includes all the measures where the numerator has a
comparison between the coincident frequencies (settings in which either the phe-
nomena appear or the phenomena are absent) and the noncoincident frequencies
(settings in which one phenomenon appears but the other is absent). As a result,
these measures may be either positive (if coincident events predominate) or nega-
tive (if noncoincident events predominate), which events do not coincide are more
numerous. The well-known Pearson (pearson) and Yule (yule) measures belong
in this section as does that of Hamann (hamann).

In the first elaboration, the above measures are all considered similarities. To
transform them into measures of distance, they have to be converted in accordance
with the following expression:

distance = 1− similarity

If the measure has a range of 0 to 1, this range is preserved but with a different
meaning, because the 0 indicates complete coincidence. However, if the measure
possesses a range of −1 to +1, the new dissimilarity or distance measure will be
between 0 and 2, and a value of 1 will indicate complete independence. As such,
coefficients that are greater than this quantity are an expression of two events that
coincide with a lower frequency than would be implied by chance. See table 10.
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Table 10. Distances among events

. coin Word*, dmatrix distance(matching) minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Matching distances Word1 Word2 Word3 Word4

Word1 0.0
Word2 0.2 0.0
Word3 0.6 0.4 0.0
Word4 0.4 0.6 0.6 0.0

. coin Word*, dmatrix distance(pearson) minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Pearson distances Word1 Word2 Word3 Word4

Word1 0.0
Word2 0.4 0.0
Word3 1.4 0.8 0.0
Word4 1.2 1.4 1.4 0.0

. coin Word*, dmatrix distance(haberman) minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Haberman distances Word1 Word2 Word3 Word4

Word1 0.0
Word2 0.9 0.0
Word3 3.1 1.9 0.0
Word4 2.8 3.1 3.1 0.0

. coin Word*, dmatrix distance(geodesic) minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Geodesic distances Word1 Word2 Word3 Word4

Word1 0.0
Word2 1.0 0.0
Word3 2.0 1.0 0.0
Word4 . . . 0.0

Aside from these measures recognized by statistical literature, Haberman’s (1973)
normalized residual is proposed here as an indicator of concurrence (similarity)
between two possible events. Its most outstanding property is that it is symmet-
rical, which implies that the residuals of a given event and another are the same
independently of their order. A second noteworthy property is that it possesses as
maximum and minimum values the square root of n. The first property is impor-
tant where one event necessarily occurs after the other. The minimum value in the
second property only occurs when one of the events is present while the other is
absent; however, in the case where both events are lacking in at least one setting,
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this method does not take the minimum value because there is some coincidence
in the nonappearance in a given setting.

It would be very easy to convert the normalized residuals of Haberman in a dis-
tance measure, if it is subtracted from the square root of n. If so, two entirely
concurrent events would have the value 0, two independent events would take the
value

√
n, and two comprehensively antagonistic events would take the value 2

√
n.

Below, when we discuss the different spatial representations of the incidents, we
will use the concept of distance, and we will select different metrics to obtain these
representations. I must mention here a) the geodesic distance between incidents,
such as the number of vertices to be covered to get from one incident to another;
b) the distance χ2, which is used in the representation of events based on corre-
spondence analysis; and c) tetrachoric correlation, which is used as a measure of
similarity in principal components analysis.

8. Adjacency matrix (adjacencies)

An adjacency matrix is the central element of the coin program. It is constructed
from the significances that have been chosen and can be used for the development
of graphs. This matrix (like that of incidences) is composed of only 0s and 1s,
with 1s indicating the coincidence between two events or a series of events; this co-
incidence, as discussed above, may be a mere coincidence, a probable coincidence,
or a statistically probable coincidence.

In the simple example that follows, the coincidence matrices will be different
matrices depending upon how the coincidence is classified (see table 11). All
possible pairs are merely coincident because they appear together at least once
in the text. Word3 and Word4, for example, do not have a probable coincidence
because the probability that Word3 will appear is 66.6%, and it appears in only
50% of cases in which Word4 appears. Finally, no coincidence between the words
is statistically probable given that the sample size of texts is so small.
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Table 11. Adjacency matrices

. coin Word*, adjacencies minimum(3) pvalue(1)

5 scenarios. 6 mere coincidences amongst 4 events. Density: 1.00.
> Components: 1.
4 events(n>=3): Word1 Word2 Word3 Word4

Adjacency matrix Word1 Word2 Word3 Word4

Word1 0.0
Word2 1.0 0.0
Word3 1.0 1.0 0.0
Word4 1.0 1.0 1.0 0.0

. coin Word*, adjacencies minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Adjacency matrix Word1 Word2 Word3 Word4

Word1 0.0
Word2 1.0 0.0
Word3 0.0 1.0 0.0
Word4 0.0 0.0 0.0 0.0

. coin Word*, adjacencies minimum(3) pvalue(.05)

5 scenarios. 0 statistically probable(p<=.05) coincidences amongst 4 events.
> Density: 0.00. Components: 4.
4 events(n>=3): Word1 Word2 Word3 Word4
Warning: These variables haven´t statistically probable(p<=.05) coincidences.

Adjacency matrix Word1 Word2 Word3 Word4

Word1 0.0
Word2 0.0 0.0
Word3 0.0 0.0 0.0
Word4 0.0 0.0 0.0 0.0

To improve the analysis, the events described in the above matrices can be ar-
ranged by frequency. The descending option will arrange dichotomous variables
from highest to lowest frequency, while the ascending option will arrange them
from lowest to highest frequency. The default is to present variables in the order
in which they appear in the variables list.

When there are many events to analyze, all previous matrices may be limited in the
number of columns that are displayed by using the head() option. All variables
will appear in the rows of the result, while only those mentioned in head() will
appear in the columns.

Sometimes, it may be best to limit the analysis to only those events that have a
certain number of incidences. This can be controlled with the minimum(#) option.
The default is minimum(5), which means that no results are presented of those
variables or events that have not happened in at least five scenarios. This amount
may change with an absolute or a relative frequency. If a number between 0 and
1 is expressed, it shall be construed as the percentage of scenarios that must be
present for an event to be analyzed.



M. Escobar 1133

Similarly, though more complex, is the support(#) option. With this option,
a frequency or relative frequency can be shown, affecting the construction of the
adjacency matrix. support() can be understood as the minimum number of
coincidences needed so that the matrix element corresponding to a pair of adjacent
events appears as a value of 1.

Another way of presenting the aforementioned statistics is with the list option.
This generates, by default, the ordered set of Haberman positive residuals. This
list can be modified in two ways: with the key(key) option, the statistics that
are shown can be changed, and with the lmin(#) option, the minimum value
displayed can be changed (by default, it is set at 0). Similarly, the ledges(#)

option can be used to limit the list to the # higher values.

9. Centrality measures (centrality)

The statistics enumerated up to now are all matrix values; that is, they have a
different value for each pair of events considered. The vast majority of them,
including frequencies, are symmetrical, but others (such as vertical or horizontal
percentages) are not. In contrast, centrality measures, derived from the adjacency
matrix, do not refer to a pair of events, but they take account of the set of relations
that each event presents. The degree index shows the number of coincidences (in
percentages) of each event. The closeness index takes as an average the geodesic
distance (see item 7 above) between an event and those that are directly or in-
directly connected. The betweenness expresses the connecting strength that each
event has. Similarly, the information index reflects the percentage of coincidences
involved in each event in question. See table 12.

Table 12. Centrality measures

. coin Word*, centrality minimum(3)

5 scenarios. 2 probable coincidences amongst 4 events. Density: 0.33.
> Components: 2.
4 events(n>=3): Word1 Word2 Word3 Word4

Centrality measures Degree Close Between Inform

Word1 0.33 0.67 0.00 0.25
Word2 0.67 1.00 1.00 0.50
Word3 0.33 0.67 0.00 0.25
Word4 0.00 . 0.00 .

3.2 Graphics

Much of the statistical information obtained through coin can be displayed graphically.
The coin command is capable of producing seven different types of charts.
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1. Bar plots (bar)

The most basic charts are bar plots, obtained with the bar option. The incidence
percentages of each of the events are ordered from the greatest to the least present
and are displayed horizontally. See figure 1 for an example.

2. Coincidence bar plots (cbar(varlist))

Coincidence bar plots are specific for each event. In each graph of this type, inci-
dences of all the events analyzed appear in light colored bars, and the coincidences
of the event represented by the set appear in a darker color. Thus, in these types
of graphs, the relative frequencies of the diagonal of the matrix (the incidences
of the events) are represented with light colored bars, while the relative frequen-
cies of occurrence in the column of the event are represented with darker colored
bars. With this kind of graph, you can detect with ease what events coincide in
absolute terms with a particular event by ordering the bars according to their
corresponding percentages of coincidence. See figure 1 for an example.

3. Conditional coincidence bar plots (ccbar(varlist))

These graphs are also specific for each event. With conditional coincidence bar
plots, the probability of every event is conditional to the event that is represented;
consequently, the event chosen to be represented does not appear in the plot. The
bar with the darker color represents the conditional probability. Both left and
right bars, which are lighter, may also appear and indicate the expected value in
the case of independence between events. Thus, if the darker bar appears on the
left, the event represented by the bar is probably coincidental; if the darker bar
appears on the right, however, the corresponding event is less likely. See figure 1
for an example.
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Figure 1. (Co)incidence bar plots and dendrogram

4. Standardized residual graphs (rgraph(varlist))

Standardized residual graphs are also specific graphics for each event. In this
case, all the events are represented by symbols proportional to their frequency. A
horizontal line is drawn from the symbol with a length equivalent to 1.64 times the
typical error of the residual. This is done to check the unilateral hypothesis that
the events are statistically probable under the assumption that they are normally
distributed.

The central value of the horizontal axis of these graphs is 0, corresponding to the
null hypothesis. Two events that are not mutually probable generate a symbol to
the left of the central axis, and the confidence interval is plotted from the symbol
toward the central axis. If the central axis is not reached, it is assumed that, with
a 95% confidence level, neither event is probable in the population. When the
two events are probable, the corresponding symbol is to the right of the axis and
the confidence interval is plotted to the left. If the vertical axis is exceeded, both
events can be considered statistically probable with a significance level of 0.05.
See figure 2 for an example.
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5. Graphs of odds ratios (ograph(varlist))

These graphs are similar to the above, but instead show odds ratios with their
corresponding confidence intervals. Thus, graphs of odds ratios have on the hori-
zontal axis a central value of 1. Here the null hypothesis is that the odds ratio is
equal to 1, because in this case the events are independent.

As with the standardized residual graphs, if the symbol is to the left of the corre-
sponding event, it will not be probable with the event that is represented in the
whole graph. If the confidence interval reaches the line representing 1, then it may
be likely in a population with a confidence interval of 95%. If these two events are
mutually probable, the symbol of the odds ratio will be located to the right, at a
greater distance than the confidence intervals if they were statistically probable.
See figure 2 for an example.
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Coincidences odds of Word1
Word1
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Word4

5 10 15

Coincidences odds of Word3

Figure 2. Residuals and odds ratios graphs

6. Dendrograms (dendrogram(linkage))

Dendrograms can be created to display the extent of coincidence in a series of
events, producing hierarchical clustering algorithms. Several procedures permit
the linking of more than two events on the basis of their distances. In the simple
method (single), events are linked by the distance between the closest events.
The complete method (complete) links events by the distance between the least
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coincident events. Events can also be linked by using the median of the distances
(median) or by performing a weighted average (waverage) or a nonweighted mean
(average). Finally, analysis can also be conducted by comparing the centroids
(centroid) of each pair of groups of events or by trying to minimize the variance
within each cluster of events with the Ward method (ward).

7. Network graphs (graph(layout))

Another way to represent the coincidences between events in a given analysis of
scenarios is by using graphs suitable for social network analysis. The matrix of
incidences could be represented by a two-mode graph. However, this would not be
practical in the great majority of situations, because it is common to have a large
set of scenarios, for example, more than 1,000. For this reason, it would be more
convenient to carry out a mode-1 graph constructed by means of the adjacency
matrix between events, leaving aside the scenarios.

The lines connecting events (nodes) in network graphs can be represented with
a thickness proportional to the value of the standardized residuals (edgessized)
or by adopting up to three different patterns of lines: continuous, dashed, and
dotted, according to the three levels of significance of the aforementioned residuals
(levels(# # #)).

The scale of the nodes can be changed with the mmultiplier(#) option. If # is
less than 1, the nodes become smaller; if # is greater than 1, they become larger.
It is also possible to change the color or form of nodes, but an auxiliary file must
be used (see section 3.3).

To examine a particular area of the graph in greater detail, the ego(varlist) option
can be used to omit events or variables that are unrelated to those expressed in the
list of variables. This option is complemented by the lego(#) option, which has a
default of 1. This number denotes the number of elements in the path. A number
greater than 1 shows events that are not immediately related to the variables in
ego(). The larger the number specified in lego(), the greater the number of
nodes that will be represented in the network of coincidences plotted graphically.
An alternative to control of the graphs of network events is the edges() option.

Graph coordinates

The principal difficulty with these graphs is deciding where to place each node. Although
there are multiple algorithms to build the nodes layout, only the most statistically based
has been implemented in coin. These are the following:

1. Circular coordinates (graph(circle))

In coincidence analysis, circular coordinates place nodes equidistant in an imagi-
nary circle. If the nodes are intended to represent J vertexes, the 360 degrees of
a circle is divided into J parts and each event is located within a division. The
abscissa coordinates are obtained using the cosine function, while the ordinates
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are calculated using the sine function. These calculations can take several forms
depending on the order in which the events are placed.

2. Multidimensional scaling (graph(mds))

Multidimensional scaling (MDS) is “a generic term for a class of techniques that
attempt to construct a low-dimensional geometrical representation of a proximity
matrix for a set of stimuli, with the aim of making any structure in the data
as transparent as possible” (Everitt 2003, 252). MDS can also be considered a
“dimension-reduction and visualization technique. Dissimilarities (for instance,
Euclidean distances) between observations in a high-dimensional space are rep-
resented in a lower-dimensional space (typically two dimensions) so that the Eu-
clidean distance in the lower-dimensional space approximates the dissimilarities
in the higher-dimensional space” (StataCorp 2015, 471).

To represent the adjacency matrix according to the principles of a dimensional
scale, it must be converted into a set of distances (dissimilarities). The most ap-
propriate method would be to convert the adjacency matrix into its corresponding
geodesic distances matrix containing either the number of nodes that separate two
events or the sum of the shortest distances if they are different from 1. Next, a
modern scaling method with stress loss function, normalized by the squared Eu-
clidean distances, is used to obtain the coordinates of the nodes. Modern MDS

(the mdsmat command) is applied to the matrix of geodesic distances, using as
initial location the circular coordinates of the nodes by the order of introduction
or modified according to ascending or descending frequency. By default, a max-
imum of 1,000 iterations is used to converge, but this limit can be changed with
the iteration(#) option.

The effect of applying the mechanics of MDS to the representation of vertices,
nodes, or events is twofold. First, two correlated events will tend to be close in
space. Second, the events with the highest number of matches will tend to be
located in the center of the diagram. As a consequence, less correlated events will
tend to be located on the fringes of the space. See figure 3, below, for an example.

3. Principal components analysis (graph(pca))

Historically, this is the first statistical tool for the spatial representation of vari-
ables based on their correlations. Principal components analysis (PCA) is “a pro-
cedure for analyzing multivariate data which transforms the original variables into
new ones that are uncorrelated and account for decreasing proportions of the vari-
ance in the data. The aim of the method is to reduce the dimensionality of the
data” (Everitt 2003, 296). “The leading eigenvectors from the eigen decomposition
of the correlation or the covariance matrix of the variables describe a series of un-
correlated linear combinations of the variables that contain most of the variance”
(StataCorp 2015, 723).
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The principal problem with the factorial representation of correlated events is that
their factorial coordinates are derived from a correlation matrix whose dichoto-
mous variables are inappropriate for representing such events. To resolve this
problem, tetrachoric correlations are proposed for the construction of the input
matrix of the subsequent factorial analysis. The pcamat command is used and
forced to return only two components. Nonrotated eigenvalues are considered to
be coordinates of the representation of the nodes.

In this case, the spatial representation will be such that the more highly correlated
two events are, the closer they will be to each other. (They occur or do not
occur simultaneously.) However, unlike the representation of MDS, events with
high mutual correlations will be located at one extremity of the space, generally
sharing coordinates of the first (or second) dimension.

Notably, in PCA, the number of noncoincidences is taken into account (as negative
correlations). When two events fail to reach a requisite threshold, the coincidence
is determined to be 0. In factor analysis, such negative correlations are taken into
account and also quantified. See figure 3 for an example.

4. Correspondence analysis (graph(ca))

Correspondence analysis (CA) is “a method for displaying the relationships be-
tween categorical variables in a type of scatterplot diagram” (Everitt 2003, 94). It
“offers a geometric representation of the rows and columns of a two-way frequency
table that is helpful in understanding the similarities between the categories of
variables and the association between the variables. [. . . ] In some respects, CA

can be thought of as an analogue to principal components for nominal variables”
(StataCorp 2015, 35). With this analysis, similar categories (events or incidences)
can be represented together in a Euclidean space of min{(R− 1), (C − 1)} dimen-
sions according to the pattern of concurrence. To obtain the coordinates by this
method, the command camat is used. The source matrix is formed with scenarios
as rows and events as columns. Only two factors are used to obtain the coordinates
of the nodes.

In the case of CA, χ2 distances are also used. Using this analysis, the columns
(C, whether event or incidence) are compared with each other to discover if they
show patterns of similar occurrence in the set of scenarios (R rows) in which they
may be included. In a similar fashion to factor analysis, sets of incidents that co-
occur in the same scenarios will tend to be located closer together in the graph.
Infrequent events will tend to go on the extremities, occupying the greater part
of the inertia (variance) of the graph. See figure 3 for an example.

5. Biplot analysis (graph(biplot))

As Gabriel (1971) comments, “any matrix of rank two can be displayed as a biplot
which consists of a vector for each row and a vector for each column, chosen so that
any element of the matrix is exactly the inner product of the vectors corresponding
to its row and to its column. If a matrix is of higher rank, one may display it
approximately by a biplot of a matrix of rank two which approximates the original
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matrix.” The biplot command is used, and the variable coordinates are used to
represent the nodes.

The result of applying biplot graphing techniques is a graph where both obser-
vations (scenarios, in the case of coincidence analysis) and variables (events, in
this context) are combined. These are represented in a peculiar way because they
are drawn as vectors emanating from the center of the graph with their length
proportional to their variance and at an angle equal to their correlation.2

With this method (in contract to CA), where the variables are not standardized,
the frequent and infrequent events will appear in the center of the graph, while
those with a probability close to 50% will be located at the extremities of the
graph, provided that they demonstrate high correlation with other events. See
figure 3 for an example.
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Figure 3. Coincidence network graphs

2. From a practical standpoint, biplot is a PCA that does not hold more than two factors. However,
there are two differences. The first is that Pearson correlations are used in biplots, while tetrachoric
correlation coefficients are used in PCA. The second is that biplots operate with the mean difference,
while in PCA the default is to standardize variables.
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3.3 The auxiliary file

An auxiliary file in coin can have two purposes: to make a selection using determinate
criteria other than the size of events in the analysis and to give color and shape to
network graphs. Below, the form that an auxiliary file must have will be explained and
then its two uses will be recounted.

An auxiliary file is a type of Stata dataset in which events are to be included as
cases. The fundamental characteristic of this type of file is that it must have a string
variable called variable whose values must match the names of the variables in the
main file. This auxiliary file could therefore be called a “secondary file”. In addition
to the variable variable, the secondary file may contain other variables of an integer
numeric type, preferably labeled, which will help select events or graphs to represent
them differently.

coin facilitates the creation of the auxiliary file with the varsave(filename) op-
tion, which can be accompanied with the replace option to overwrite an existing file.
varsave() generates a file with as many cases as variables that are specified in the
varlist of coin. In addition to generating the variable variable described above, coin
will generate the variable label, consisting of the label of each variable, and the variable
frequency, consisting of the number of events present in the original database. This
file must be later edited to add new variables to fulfill the purpose of its creation.

Once the auxiliary file has been created, the data must be loaded into memory with
the primary file. You can do this with the coin command by typing using filename.
If you desire to select in the analysis the events with certain determinate values in the
available variables, you must add the where(exp) option, where exp must contain a
logical expression in which the names of the variables in the secondary file must be
used. For example, if where(c1 == 1) is used, Word1 and Word4 are the only events
to be analyzed.

An auxiliary file can also allow the variation of the attributes of the nodes of a graph.
If it is desired to use different colors, symbols, or both, the options color(varname) or
form(varname) must be included, as well as including using filename. If the legend

option is added, a legend will also appear in the graph, giving the meaning of the colors
and the symbols. Together with color() or form(), the options colors(colorlist) or
symbols(symbollist) can also be used.

3.4 Other possibilities offered by coin

The coin command allows data (scenarios) to be weighted by weight (fweight, aweight,
iweight, and pweight). The in range and if exp clauses can also be used to select the
scenarios that are encountered in a particular position in the dataset or that satisfy a
condition.

The over(varlist) option permits further possibilities for analysis. Using it, the
analysis of coincidences can be repeated, controlling each of the events expressed in
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the option. A limitation that this command possesses (like those commands that draw
partial graphs) is that in the specified list any variable that is not found in the main
list of variables cannot be included. The result is as many matrices, tables, or graphs
as there are variables specified in the list. Also possible is the keyword all to control
each of the events analyzed. Even after having specified the over() option, coin ends
with a comprehensive analysis of coincidences covering all the events.

Finally, coin’s statistical procedures and ability to convert a two-mode network to a
one-mode network can be used in more specialized network mapping and analysis pro-
grams because coin optionally saves its results to five formats: comma-separated values,
Microsoft Excel, UCINET (Borgatti, Everett, and Freeman 2002), Pajek (De Nooy, Mr-
var, and Batagelj 2011), and Network Analysis Using Stata (nwcommands; Grund 2015).
The export(filename, type) option is used to do this, where type can be any of the
following (corresponding to the formats just mentioned): csv, xls, dl, pjk, or nw. The
replace option must be added to overwrite an existing file.

4 The coin command

4.1 Syntax

coin varlist
[
if
] [

in
] [

weight
] [

using filename
] [

, options
]

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

See the following section for the list of available options.

4.2 Options

Options can be classified into the following groups:

Outputs (to produce or not produce some results of the analysis)

frequencies writes a table of absolute observed frequencies of coincidences.

grelative writes a table of relative frequencies (%) of coincidences.

crelative writes a table of relative frequencies (%) of coincidences in the case of con-
trolled variables; see over(varlist).

mrelative writes a table of relative frequencies (%) including missing variables.

vertical specifies to display the conditional frequencies vertically calculated (column
percentages).

horizontal specifies to display the conditional frequencies horizontally calculated (row
percentages).
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expected specifies the expected values of the number of coincidences under the inde-
pendence hypothesis.

residuals specifies to display the residuals, that is, differences between observed and
expected frequencies.

standard specifies to display the standard residuals, that is, residuals divided by the
square root of the expected frequency.

normalized specifies to display the Haberman residuals, that is, the adjusted standard
residuals.

pnormalized specifies to display the significance or p-value of the Haberman residuals.

odds specifies to display the odds ratios.

stodds specifies to display the standard error of ln(odds ratios).

podds specifies to display the p-value of the odds ratios.

pfisher specifies to display the p-value of the Fischer exact test.

tetrachoric specifies to display the tetrachoric correlations of binary events.

adjacencies specifies to display the adjacency matrix, which is obtained comparing z
and p.

dmatrix specifies to use the distance matrix with the distance measure specified in
distance().

similarity specifies to use the similarity matrix with the distance measure specified in
distance(). All the distances are scaled to have a minimum of 0 and a maximum
of 1.

distance(measurename) specifies the measure to display or to graph as a dendrogram.
measurename can be one of the following: haberman, geodesic, matching, sneath,
rogers, anderberg, gower2, jaccard, dice, antidice, ochiai, kulczynski,
russell, hamann, yule, or pearson. The default is distance(haberman).

mminimum(#) specifies the minimum value of the elements of the similarity matrices.
Values below # are changed to 0.

list specifies the ordered list of a symmetrical statistic. The default statistic is Haber-
man.

key(statistic) specifies the statistic to be shown in the ordered list. statistic can be one
of the following: frequencies, grelative, vertical, horizontal, expected, odds,
residuals, standard, normalized, pnormalized, podds, pfisher, tetrachoric,
adjacencies, or dmatrix.

lminimum(#) specifies the minimum value of the ordered symmetrical statistic to list.
# can be negative.
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centrality specifies to display the centrality measures for each event (degree, closeness,
betweenness, and information).

all specifies to display all previous statistics.

x specifies the table of coordinates for each event. This option may be specified only if
the xy() option is also specified.

xy(mds | pca | ca | biplot | all) specifies the table of coordinates for each event.

Controls (apply filters to data)

over(varlist) controls the output for those variables in varlist .

where(exp) selects events according to their characteristics specified in exp. using

filename must be used with where().

head(varlist) shows only the specified variables in columns.

width(#) specifies the size of the label column. The default is width(20). The maxi-
mum # is 30 characters.

variable(varname) displays the specified variable in the first column and the last row.

ascending shows the events in ascending order of appearance.

descending shows the events in descending order of appearance.

minimum(#) specifies the minimum frequency of an event to be analyzed. The default
is minimum(5). If 0<#<1, the percentage of scenarios where the event occurs is
assumed.

support(#) specifies the minimum frequency of a coincidence to be represented as
an arrow in the graph. The default is support(1). If 0<#<1, the percentage of
scenarios where the coincidence occurs is assumed.

pvalue(#) specifies the minimum p of the Haberman’s residual to establish an adja-
cency. The default is pvalue(0.5), meaning that the coincidence is probable. If
pvalue(1) is specified, a simple coincidence is considered. For statistically probable
coincidences, set the value at 0.05 or less.

bonferroni specifies to correct the significance of the p-value by Bonferroni criteria:
events(events− 1)/2.

ledges(#) specifies the maximum number of edges to list.

edges(#) specifies the maximum number of edges to represent in the graph.

iterations(#) specifies the maximum number of iterations to obtain coordinates in
the MDS graph option.
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Plots (graphic data representation)

There are four classes of graphic data representation: bar plots, residual plots, dendro-
grams or cluster plots, and network graphs.

1. A bar plot can be a simple, coincidence, or conditional coincidence bar plot.

bar plots incidences of all events.

cbar(varlist) plots coincidences of events in varlist .

ccbar(varlist) plots conditional coincidences of events in varlist .

2. Residual plots can be drawn with two different units: standardized residuals or
odds ratios.

rgraph(varlist) draws a standardized residual graph.

ograph(varlist) draws an odds ratios graph.

3. Dendrograms represent each event as a line that is as long as the minimal distance
to another event or set of events. One of the available statistics to measure the
distance between two events must be set in the distance() option (see above).
By default, Haberman’s distance is chosen (distance(haberman)).

dendrogram(linkage) plots a dendrogram. linkage may be one of the following:
single, average, complete, waverage, or wards. You may also specify median

or centroid, but they cannot handle dendrogram reversals.

4. Network graphs represent each event as a node with a size proportional to its
occurrence and connected to any other event with which it is coincident. The
placing of every node will depend on the method used. At this moment, coin
is able to produce the five different algorithms already explained above: circular
position (circle), MDS (mds), PCA (pca), CA (ca), and biplots (biplot). If all
is specified, Stata will draw a combined graph using the latter four forms.

graph(circle | mds | pca | ca | biplot | all) draws a network graph using different
types of coordinates.

levels(#
[
#
] [

#
]
) specifies sorted cutpoints (a minimum of one and a max-

imum of three) to draw different line styles (dot, dashed, or solid).

positions(matrixname) specifies a matrix of the number of nodes (or columns)
to define the clock position of the labels in the graph.

mmultiplier(#) specifies the markers scale. The default is mmultiplier(1).
This option is especially useful in graphs with characteristics.

ego(varlist) specifies the graph’s ego-net with the varlist events.

lego(#) specifies the maximum length of ego()’s path to represent.

Special characteristics can also be added to network graphs:

goptions(graph options) specifies any graph options that affect the characteris-
tics of graphs, for example, goptions(title("Network Graph")). See
[G-3] twoway options.
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Network graphs can be enhanced with different colors and forms to its nodes. This
can be done in two ways:

a. With a two-dimensions matrix.

character(matrix) introduces a (nodes x 2) characteristics matrix conform-
ing to symbol and color.

b. With a filename, where a so-called string variable coincides with the name of
the variables that represent events in the main file. using filename specifies
a file with events as first variables and other variables as attributes of events.

form(varname) specifies the variable name with which to configure the form
of the nodes.

symbols(symbollist) specifies the symbols to use for the nodes. using file-
name and form(varname) must also be specified with symbols().

color(varname) specifies the variable name with which to configure the
color of the nodes.

colors(colorlist) specifies the colors of the symbols of the nodes. using

filename and form(varname) must also be specified with colors().

labels(varname) specifies a string variable from within using filename with
which to configure the labels of the nodes. using filename and form() must
also be specified with labels(). By default, event labels are used.

legend indicates that a legend with the symbols and colors of the nodes be
included. Characteristics of events should be labeled in the characteristics
file.

groups(#) is an alternative to specifying options form() and color().
groups() represents events according to their distances in such a way that
similar events appear with same colors. # specifies the number of event
conglomerates. See dendrogram() and distance() above.

Exportations (saved files)

varsave(filename) saves a Stata dataset (.dta) with variable names as cases to begin
the creation of the characteristics file.

export(filename
[
, csv | xls | nw | pjk | dl ]) specifies to export data to one or two files,

depending on the optional specification. csv creates two files: file E.csv contains
edges information, and file N.csv (the default) contains nodes information. xls

writes two tabs in the same Excel file (.xls) with nodes and edges information. nw
saves a Stata dataset (.dta) that can be read with nwcommands (Grund 2015). pjk
saves information so that it can be read with the Pajek program. dl saves a file to
be read with UCINET.

replace specifies to overwrite existing files.
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4.3 Stored results

coin stores the following in r():

Scalars
r(n) number of observations r(e) number of selected events
r(c) number of coincidences r(d) density

Macros
r(events) list of events r(selected) list of selected events

Matrices
r(L) vector of frequencies r(Q) vector of selected events
r(F) frequencies r(G) relative frequencies
r(V) vertical percentages r(H) horizontal percentages
r(E) expected frequencies r(R) residuals
r(S) standardized residuals r(N) normalized residuals

(Haberman)
r(pH) significance (Haberman) r(O) odds ratios
r(sO) standard error (odds ratios) r(pO) significance (odds ratios)
r(pF) significance (Fisher test) r(T) tetrachoric correlations
r(A) adjacency matrix r(C) centrality measures
r(X) nodes coordinates r(Node) nodes table
r(Edge) edges table r(oEdge) ordered edges table
r(Distance) distance matrix r(distance) similarity matrix
r(Degree) degree vector r(Close) closeness vector
r(Between) betweenness vector r(Inform) information centrality vector

5 An example: Spanish unemployed

This example comes from the Spanish Labor Force Survey3 and seeks to explore the
ways in which job seekers in Spain look for work. This survey is prepared by the
National Institute of Statistics every three months on a sample of 60,000 households.
Here we use the survey for the second quarter of 2013. It contains information about
171,909 people who are aged from 0 to 105 years old, among whom 24,485 were seeking
work. To make the example a size that could be downloaded and used quickly with the
coin command, 1,000 unemployed people were selected at random. This is, therefore,
a two-phase sample.

The survey asked about the methods the unemployed were using to find work. The
responses were coded into 13 categories, which have been grouped into 6 classes of job
seekers: a) those using employment agencies, whether public or private; b) those using
contacts with employers or other types of contact; c) those using job advertisements;
d) those seeking to establish themselves as self-employed; e) those who restrict them-
selves, waiting for results or offers; and f) those who cannot be classified in the other
categories. In search.dta, there are 13 indicator variables (with values that are either
0 or 1), which express whether the selected individuals used any of the 13 categories
mentioned.

3. Data were obtained from http://www.ine.es.
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A primary examination of similarities in the major job search methods used by the
unemployed can be obtained using the frequencies option of the coin command (see
table 13). The results table is displayed by categories.

Table 13. Table of coincidences of ways of looking for jobs

. use search

. coin search1-search13, frequencies minimum(.20)

1000 scenarios. 58 probable coincidences amongst 13 events. Density: 0.74
8 events(n>=200): search1 search2 search3 search4 search5 search6 search9 search
> 10
(28 probable coincidences amongst 8 selected events. Density: 1.00. Components:
> 1)

Frequencies se~h1 se~h2 se~h3 sea~4 sea~5 sea~6 sea~9 se~10

Agency
public 555

private 205 310

Contacts
employers 452 279 801
informal 495 281 726 866

Ads
placing 227 174 367 368 405

looking at 401 256 612 637 403 706

Waiting
offers 232 118 262 291 141 232 315

results 148 105 227 229 152 214 136 250

Because there are too many categories (13) to fit horizontally on a page, nonfrequent
events have been omitted from the table. To this end, the option minimum(#) is used,
and in this case, a value of 0.20 is used to discard events (ways of looking for jobs) with
less than 20% of occurrences (unemployed people using these forms).4

To obtain the graph (figure 4), this minimum has been changed to represent events
with more than 1.5% of incidence. We use an auxiliary file (searchc.dta) so that the
different categories are represented by distinct symbols.

use search
matrix U=J(1,11,6)
coin search1-search13 using searchc, frequencies graph(mds) ///

levels(.05 .01 .001) form(type) minimum(.015) ///
goptions(title(Ways of looking for jobs) name(jobs, replace)) ///
positions(U)

4. Because we introduced a value less than 1 into the option minimum(), the program automatically
considers this to be a proportion.
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Agency: publicAgency: private

Contacts: employers

Contacts: informal

Ads: placing

Ads: looking at

Self: employment

Self: loan

Waiting: offers

Waiting: results

Others: interviews

MDS coordinates

Ways of looking for jobs

Figure 4. Links between different ways of looking for jobs

The result is a graph in which three methods of job search stand out because of
their frequency. First and second are those who use their contacts, be they informal
or with employers. Third are those who look at job advertisements. These three along
with placing advertisements form a strong network of options very frequently used by
unemployed people.

On the other hand, a high degree of centrality in the search method of using private
agencies can be observed, which shows that those who use this method often also used
other means to look for a job. This contrasts with those who seek employment using
public agencies because they only regularly use the method of waiting for job offers.
Finally, the low frequency of those who are seeking to create their own employment or
asking for a loan can be perceived, but it is clear and obvious that both are coincident
among a small proportion of job seekers.

All of these categories are present in the same question in the questionnaire because
it is asked in a multiple choice format. Each subject may use more than one method
to find work, so coincidences can be identified and counted. In this example, when
working with the sample only, the statistically probable coincidences were represented.
The representation of different thicknesses of line corresponds to different degrees of
significance. The dotted lines correspond to a p < 0.05; the discontinuous lines to
p < 0.01; and the continuous lines to p < 0.001.
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Another important function that coincidence analysis can perform is to explore the
relationships between categories of different variables. To give one example of this utility,
we add three age groups to the previous example with 13 categories of job search: young
people under age 40, adults between ages 40 and 55, and those older than age 55. To
properly introduce these characteristics, we use factor variables to introduce all the
categories of a nominal variable.

The most basic table for the analysis of this relationship is obtained by means of
vertical percentages (see table 14).5 By examining the first three columns, it can be
deduced that there is a monotonic relationship between age and the job search method
used: older people rely more on public employment offices, while younger people rely
more on private offices. Younger people are more prone to use contacts with employers
than older people; in the case of informal contacts, the opposite pattern can be observed.
With regard to advertisements, young people both place them and examine them more
than older people. However, older people are more likely to receive job offers, while the
young are more likely to wait for results.

To test whether these relationships are significant, recourse is made to statistical
significance derived from normalized residuals (Haberman residuals). Examining ta-
ble 14, the following hypothesis is tested: that young people are really more prone to
search by means of business contacts, looking at advertisements and to a lesser extent,
to place advertisements concerning themselves. For their part, older people stand out
in the category concerned with public employment agencies and to a lesser degree, the
use of informal contacts and job offers.

5. In table 14, note the option head() that limits the columns to be shown. In this concrete case,
search9 (waiting offers) and search10 (waiting results) are not in head(), but they are in rows to
avoid a table that is too wide.
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Table 14. Table of coincidences of ways of looking for jobs (vertical percentages)

. coin young-older search*, vertical pnormalized minimum(.15)
> head(young-older search1-search6) width(12)

1000 scenarios. 79 probable coincidences amongst 16 events. Density: 0.66
11 events(n>=150): young adult older search1 search2 search3 search4 search5
> search6 search9 search10
(40 probable coincidences amongst 11 selected events. Density: 0.73)

Col. percent young adult older se~h1 se~h2 se~h3 sea~4 sea~5 sea~6

Age
young 100.0 0.0 0.0 37.3 44.2 45.1 40.4 45.4 46.5
adult 0.0 100.0 0.0 40.2 42.3 38.0 40.0 41.7 39.2
older 0.0 0.0 100.0 22.5 13.5 17.0 19.6 12.8 14.3

Agency
public 49.3 56.6 67.2 100.0 66.1 56.4 57.2 56.0 56.8
private 32.6 33.2 22.6 36.9 100.0 34.8 32.4 43.0 36.3

Contacts
employers 86.0 77.2 73.1 81.4 90.0 100.0 83.8 90.6 86.7
informal 83.3 87.8 91.4 89.2 90.6 90.6 100.0 90.9 90.2

Ads
placing 43.8 42.9 28.0 40.9 56.1 45.8 42.5 100.0 57.1

looking at 78.1 70.3 54.3 72.3 82.6 76.4 73.6 99.5 100.0

Waiting
offers 29.0 30.2 39.8 41.8 38.1 32.7 33.6 34.8 32.9
results 27.6 24.6 19.9 26.7 33.9 28.3 26.4 37.5 30.3

p. Haberman young adult older se~h1 se~h2 se~h3 sea~4 sea~5 sea~6

Age
young 0.00 1.00 1.00 1.00 0.17 0.00 0.99 0.03 0.00
adult 1.00 0.00 1.00 0.29 0.11 0.97 0.18 0.11 0.57
older 1.00 1.00 0.00 0.00 1.00 1.00 0.02 1.00 1.00

Agency
public 1.00 0.29 0.00 0.00 0.00 0.12 0.00 0.39 0.10
private 0.17 0.11 1.00 0.00 0.00 0.00 0.01 0.00 0.00

Contacts
employers 0.00 0.97 1.00 0.12 0.00 0.00 0.00 0.00 0.00
informal 0.99 0.18 0.02 0.00 0.01 0.00 0.00 0.00 0.00

Ads
placing 0.03 0.11 1.00 0.39 0.00 0.00 0.00 0.00 0.00

looking at 0.00 0.57 1.00 0.10 0.00 0.00 0.00 0.00 0.00

Waiting
offers 0.92 0.76 0.00 0.00 0.00 0.05 0.00 0.03 0.08
results 0.05 0.59 0.96 0.09 0.00 0.00 0.00 0.00 0.00
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As was the case in all previous examples, these quantities can be transferred to a
network graph showing the frequencies of each of the categories as well as the coinci-
dences or relationships between them. In this way, it can be observed by examining the
age categories represented by empty triangles that the group of adults does not have any
statistically significant relationship with the mode of job search, while the categories
of young and old do have such a relationship with three different search strategies (see
figure 5).

coin young-older search* using searchc, minimum(.02) ///
graph(mds) levels(.05 .01 .001) form(type) ///
goptions(title("Ways of looking for jobs") ///
caption("Source: INE(2013)") note("MDS coordinates"))

Age: young

Age: adult

Age: older

Agency: public

Agency: private

Contacts: employers

Contacts: informal Ads: placing

Ads: looking at

Self: employment

Self: loan

Waiting: offers

Waiting: results

Others: interviews

MDS coordinates
Source: INE(2013)

Ways of looking for jobs

Figure 5. Links between age and different ways of looking for jobs

6 Performance

To test the performance of coin, a random dataset was built with 100,000 cases and
500 events with a density of 0.50 between them. Tests were done with 10, 50, 100, 200,
300, and 500 events crossed with 100, 1,000, and 100,000 scenarios.6 Short execution
times were obtained with experiments using up to 100 events. Simple tasks exhibit fast
performance. For example, it took just 60 seconds to get all cross frequencies of 500
events with n = 100000 scenarios (see figure 6).

6. These tests were performed in Stata 14 on an iMac (OS X 10.10.3) with an Intel Core i7 2.93 GHz
and 8 GB of DDR3-1.333 MHz memory.
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Figure 6. Computation time by task, number of events, and sample size (scenarios)

coin is not intended for large numbers of events. When 100 variables or events were
analyzed with a large number of records, only slow results were present in the PCA

graph case and in obtaining all statistics. This is because of the slow calculation of
tetrachoric correlations when there are many variables and many cases. Execution was
also slow, though less slow, in graphs using the MDS layout: 500 events needed more
than 1,000 seconds to be represented regardless of the size of the database. In addition,
the coin command is unable to perform correspondence layouts when there are more
than 11,000 observations because of limitation of Stata matrices.
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7 Conclusions

Coincidence analysis helps discover patterns of concurrence of a series of events in a
given set of scenarios. Its aim is to discover how characteristics are jointly distributed
in different units where they may or may not be present.

Three degrees of coincidences can be distinguished: simple, probable, and statisti-
cally probable. To decide which degree of coincidence two particular events present, a
frequentialist and probabilistic approach is used. Mere frequency and statistical tests
such as those of Haberman or Fisher are used to decide which events are coincident in
a set of scenarios. The coin command permits coincidences to be obtained.

It is important not only to represent the coincidences by an adjacency matrix but also
by a good quality graphical representation, which may help the user better understand
the distribution of concurrences of a set of multiple events. Using coin, coincidences
can be represented with four different types of graphs:

• Bar graphs: Their main advantage is simplicity, but their drawback is that they
generate a graph for each event, so they are not parsimonious in the study of
coincidences.

• Residuals graphs: They are also specific graphics for each event. These graphs are
useful for the differentiation of types in coincidences that affect each particular
event.

• Dendrograms: These plots join all the coincidences in one graph, but their disad-
vantage is that the agglomeration modes, as well as the multiple distance measures
available, can distort the joint study of pairs of possible coincidences.

• Network graphs: They can represent not only the incidence of the events but
also their level of coincidence and even the characteristics of the events under
consideration.

Although there are different ways to locate the events in the two-dimensional space
of graphical network representations, they all present similar and noncontradictory in-
formation through the size of nodes and the links between them. In any case, represen-
tation by MDS is recommended because of the simplicity of its geodesic distances and
its representation of the events with the highest degree in the center of the graph.

coin is also able to display many statistical measures to treat multiresponse in
questionnaires easily, to manage bipartite networks, and to discover patterns of co-
occurrences among events. These measures are frequencies and percentages, odds ratios
and correlations, significance tests, space coordinates and distances between events, and
centrality indicators.
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